Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3.
نویسندگان
چکیده
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a chronic dysregulated response to alveolar epithelial injury with differentiation of epithelial cells and fibroblasts into matrix-secreting myofibroblasts resulting in lung scaring. The prognosis is poor and there are no effective therapies or reliable biomarkers. Galectin-3 is a β-galactoside binding lectin that is highly expressed in fibrotic tissue of diverse etiologies. OBJECTIVES To examine the role of galectin-3 in pulmonary fibrosis. METHODS We used genetic deletion and pharmacologic inhibition in well-characterized murine models of lung fibrosis. Further mechanistic studies were performed in vitro and on samples from patients with IPF. MEASUREMENTS AND MAIN RESULTS Transforming growth factor (TGF)-β and bleomycin-induced lung fibrosis was dramatically reduced in mice deficient in galectin-3, manifest by reduced TGF-β1-induced EMT and myofibroblast activation and collagen production. Galectin-3 reduced phosphorylation and nuclear translocation of β-catenin but had no effect on Smad2/3 phosphorylation. A novel inhibitor of galectin-3, TD139, blocked TGF-β-induced β-catenin activation in vitro and in vivo and attenuated the late-stage progression of lung fibrosis after bleomycin. There was increased expression of galectin-3 in the bronchoalveolar lavage fluid and serum from patients with stable IPF compared with nonspecific interstitial pneumonitis and controls, which rose sharply during an acute exacerbation suggesting that galectin-3 may be a marker of active fibrosis in IPF and that strategies that block galectin-3 may be effective in treating acute fibrotic exacerbations of IPF. CONCLUSIONS This study identifies galectin-3 as an important regulator of lung fibrosis and provides a proof of principle for galectin-3 inhibition as a potential novel therapeutic strategy for IPF.
منابع مشابه
Rapamycin Inhibits Transforming Growth Factor β1-Induced Fibrogenesis in Primary Human Lung Fibroblasts
PURPOSE The present study was designed to determine whether rapamycin could inhibit transforming growth factor β1 (TGF-β1)-induced fibrogenesis in primary lung fibroblasts, and whether the effect of inhibition would occur through the mammalian target of rapamycin (mTOR) and its downstream p70S6K pathway. MATERIALS AND METHODS Primary normal human lung fibroblasts were obtained from histologic...
متن کاملBeneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats
Objective(s): The role of N-acetylcysteine (NAC) as an anti-oxidant in attenuating bleomycin-induced pulmonary fibrosis has been reported. However, its effect on parenchymal remodeling via regulating the protease-antiprotease balance is not fully defined. Therefore, the present study was designed to explore the possible role of matrix metalloproteinases (MMP), tissue i...
متن کاملComparison of a Suggested Model of Fibrosis in Human Dermal Fibroblasts by Serum from Systemic Sclerosis Patients with Transforming Growth Factor β Induced in vitro Model
Systemic sclerosis (SSc) is a chronic autoimmune disease, featuring fibrosis in multiple organs. The serum from SSc patients contain inflammatory mediators, contributing to SSc pathogenesis and could be used to develop cell culture models. Here, we compared the fibrotic effects of serum samples from SSc patients with TGFβ1 on human dermal fibroblasts (HDFs). HDF cells were cultured in four diff...
متن کاملHMGB1 induces lung fibroblast to myofibroblast differentiation through NF-κB-mediated TGF-β1 release
The proinflammatory factor high‑mobility group box protein 1 (HMGB1) has been implicated in the pathogenesis of lung fibrosis; however, the role of HMGB1 in lung fibrosis remains unclear. It has previously been reported that nuclear factor (NF)‑κB and transforming growth factor (TGF)‑β1 may be involved in lung fibrosis. Therefore, the present study aimed to examine the potential molecular mecha...
متن کاملTargeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts
Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediatin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 185 5 شماره
صفحات -
تاریخ انتشار 2012